Code No: D-17811/N

FACULTY OF MANAGEMENT M.B.A (CBCS) II Semester (New) Examination, November 2022 Subject: Operations Research Paper – MB – 203

Time: 3 Hours

Max. Marks: 80

 $(5 \times 4 = 20 \text{ Marks})$

 $(5 \times 12 = 60 \text{ Marks})$

PART – A

Note: Answer all the questions.

- 1. What are the uses of LPP?
- 2. Write about sensitivity analysis?
- 3. Explain the restricted Assignment problem?
- 4. Write about Resource smoothing?
- 5. What are the advantages and limitations of using simulation?

PART – B

Note: Answer all the questions.

6. a) Explain the various applications of operations research?

(OR)

b) Use the graphical method to find the maximum value of $Z = 10x_1 + 6x_2$

Subject to constraints $5x_1 + 3x_2 \le 30$

 $x_1 + 2x_2 \le 18$

Where $x_1, x_2 \ge 0$

7. a) Use the simplex method to find the maximum value of $Z = 107x_1 + x_2 + 2x_3$

Subject to the constraints $14 x_1 + x_2 - 6x_3 + 3x_4 = 7$

$$16x_1 + x_2 - 6x_3 \le 5$$

$$3x_1 - x_2 - x_3 \le 0$$

Where $x_1, x_2, x_3, x_4 \ge 0$

(OR)

b) Use the dual simplex method to Minimize $Z = 6x_1 + 7x_2 + 3x_3 + 5x_4$

Subject to constraints $5x_1 + 6x_2 - 3x_3 = 4x_4 \ge 12$

$$x_2 + 5x_3 - 6x_4 \ge 10$$

 $2x_1+5x_2+x_3+x_4 \ge 8$

Where $x_1, x_2, x_3, x_4 \ge 0$

..2

		To Warehouses						
		W1	W2	W3	W4	W5	Available	
From	F1	7	6	4	5	9	40	
	F2	8	5	6	7	8	30	
	F3	6	8	9	6	5	20	
	F4	5	7	7	8	6	10	
	Required	30	30	15	20	5		
			(0	R)				
e the	following a	ssignr	ment	probl	em		\sim	
		I	II	III	IV V	/	5	
	A	11	17	8	16 2	0		

8. a) Find the optimal solution for the following transportation problem.

b) Solve the following assignment problem

	I	II		IV	V
А	11	17	8	16	20
В	9	7	12	6	15
С	13	16	15	12	16
D	21	24	17	28	26
Е	14	10	12	11	13

9. a) A small project is composed of seven activities whose time estimates are listed in below table.

		Estimated direction in weeks					
	Activity	Optimistic	Most likely	Pessimistic			
		а	m	b			
	1-2	1	1	7			
	1-3	1	4	7			
	1-4	2	2	8			
()	2-5	1	1	1			
	3-5	2	5	14			
	4-6	2	5	8			
	5-6	3	6	15			

Draw the project network

Find the critical path

Find the probability of the project being completed within 19 weeks.

(OR)

b) Explain the following terms:

(i) Earliest time, (ii) Total activity time, (iii) Event slack and (iv) Critical path

- 10. a) Briefly explain the following terms with reference to the Game theory.
 - (i) Saddle point, (ii) Pure strategy, (iii) Pay-off and (iv) Mixed strategy.

(OR)

- b) The rate of arrival of customers at a public telephone booth follows Poisson distribution, with an average time of 10 minutes between one customer and the next. The duration of a phone call is assumed to follow exponential distribution, with mean time of 3 minutes.
- (i) What is the probability that a person arriving at the booth will have to wait?
- (ii) What is the average length of the non-empty queues that form from time to time?
- (iii) Estimate the fraction of a day that the phone will be in use?
- (iv) What is the probability that it will take him more than 10 minutes altogether to wait for phone and complete his call?